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ABSTRACT

A multi-input/output random vibration control algorithm was developed based on

system identification concepts derived from random vibration spectral analysis
theory. The unique features of the algorithm are: 1) the number of input excitors

and the number of output control responses need not be identical, 2) the system

inverse response matrix is obtained directly from the input/output spectral matrix,

and 3) the system inverse response matrix is updated every control loop cycle to

accommodate system amplitude nonlinearities. A laboratory demonstration case of two

inputs with three outputs is presented to demonstrate the system capabilities.

INTRODUCTION

All products are subjected to vibration during their lives, either as a result
of the manufacturing process, transportation or in-service environments. The

capability of the product to withstand this vibration environment and to provide the
desired reliability becomes a major design factor in high-technology applications

where designs are constrained by severe environments, limited space envelopes,

weight constraints and cost. These designs are often beyond the state-of-the-art in
analysis procedures, and one is forced to simulate the product's environment to
determine its reliability. To accurately estimate in-service reliability, it then

becomes necessary to develop a simulation program which accurately reproduces field

environments.

In the most general sense, a field vibration environment will consist of motion

with six degrees of freedom. Presently available experimental hardware and control

systems are limited in their capability to simulate this environment. Most tests

are performed using uniaxial random excitation and repeating the excitation along
three mutually perpendicular axes. The primary concern is that the mean-time-

between-failure (MTBF) rates determined from uniaxial tests do not represent in-
service MTBF rates. One problem is determining the duration of testing along each

axis of a uniaxial test and the respective test level adjustments to account for

physical coupling actually experienced in the field. Because of these
uncertainties, the MTBF obtained from uniaxial test can only be considered an

estimate of the in-service MTBF. For aerospace product development where product

weight can have considerable influence on overall system performance, the need for

reliable design evaluation is critical. A secondary consideration is the cost of

three test setups to complete the simulation cycle in a uniaxial test.

To satisfy these shortcomings, it will be necessary to develop test facilities

that simulate the field environments using multi-axis excitation. In the words of

MIL-STD-810 (Ref. 1), the latest revision of the military's environmental test

procedures, the test should be 'tailored' to measured field vibration. This will

require multi-axis vibration systems with control of each axis and their
interaction.
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The objectives of the present study were to develop a multiple-input/output

random vibration control algorithm based on system identification concepts derived
from random vibration spectral analysis theory and to evaluate the usefulness of the
algorithm via a laboratory-based demonstration.

A number of researchers have described in various detail the historical

development of multi-axis/actuator control systems [Refs. 2-4]. Fisher at Lawrence

Livermore Laboratory was one of the first to integrate a control theory and the

required hardware to demonstrate system capabilities and limitations to perform
multi-shaker vibration simulation [5]. The digital control system utilized a cross-

coupling compensation matrix for signal control in the dc to 500 Hz frequency
range. The major limitations of the system was the orthogonal axis excitation and

the restriction that the number of response points must equal the number of
excitation points.

Several multi-axis shaker systems are in present use; however, a number of them

employ independent actuator control without cross-axis compensation. One exception
is the facilities at Sandia National Laboratory [6-8] which has two-shaker random

vibration control system with software capable of controlling up to four shakers.

The control algorithm is based on determination of the inverse system frequency
response matrix, which requires that the number of inputs and outputs must be
identical. No capability exists for updating the system transfer function matrix

directly during the control process, however, an incremental correction matrix is
used to improve control.

There are several desired characteristics of a random vibration control

algorithm that are believed to be important in simulating field vibration
environments, they are: 1) Provide true stationary random excitation with near

Gaussian amplitude distribution and signal crest factor (peak to r.m.s.) control;

2) Full control of cross-coupling between all output responses; 3) Number of input

signals and number of output responses need not necessarily be the same; 4)

Maintain loop equalization time to within a small fraction of total test time (say,
less than 10%); and 5) Provide sufficient dynamic range and frequency bandwidth to

meet simulation tolerances. Only when multi-axis testing becomes a reality can the
degree of importance of each of these characteristics be determined.

In the sections to follow, a random vibration control algorithm is described

that removes many of the limitations of existing algorithms, the software/hardware

implementation of the algorithm is described, and an example of test results using
the system are given to point out its capabilities and limitations. Several
additional examples are given in Ref. 9.

CONTROL ALGORITHM FORMULATION

The development of the random vibration control algorithm views the simulation

problem as one of system identification. The approach uses the spectral analysis
techniques discussed in Ref. 10. For the purposes of discussion, consider the two-

input/three-output simulation problem shown in Fig. 1. Physically, the "system"

represents the dynamic response between voltage signals input into the vibration

exciters, denoted as xl(t ) and x2(t), and the response accelerations of an item

attached to the exciters, denoted as Yl(t), Y2(t) and Y3(t). The finite period (T)

Fourier_ transform of the kth sample record is denoted as X_(f,T), i = 1, 2;
and

Y](f,T), j = 1, 2, 3, respectively. The signal Fourier transforms are used to

construct one-sided input/output cross-spectral densities as
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with input auto-spectra,

• •

=

The output auto-spectra GlyyJ(f)

lim 2 E [Xi(F,T ) • Y (f,T)] (1)m+_ T

lim 2 E [X_(f,T)*T÷_ T ° X (f,T)]

is constructed in a similar way.

(2)

The operator E is

the mathematical expectation, and when averaged over N sample records of length T,
the one-sided spectral density functions take the general form

N
ij

2 _ E [xN(f,T)*iGxy(f) = k=l ° Y (f,T)] (3)

where the * denotes the complex conjugate operator. The signals are assumed to be
stationary random and, therefore, a finite number of samples, N, may be used to
estimate the desired cross- and auto-spectra.

The system frequency response function, [Hyx(f)], is defined by

{Y(f)} = [Hyx(f)]{X(f )} (4)

where the brackets [ } denote the vector of response or input Fourier spectra.

inverse frequency response function, [Ixy(f)], is defined as

{X(f)} = [Ixy(f)]{Y(f)} (5)

The

where the two system matrices are generally considered to be the inverse of each
other. Such a concept is only valid when the number of input channels equals the
number of output channels, which is not the general case considered in present

development. To estimate [Ixy(f)], we use the concept of mathematical expectation

applied to Eq. 5 after post multiplying by the conjugate transpose of {Y(f)}, which,
after some algebra, results in

[Ixy(f)] = [Gxy(f)][Gyy(f)] - (6)

Thus, the system inverse response matrix is the product of the system input/output
cross-spectral matrix and the inverse of the system output spectral matrix. It is
important to note that when the system outputs are fully correlated, the output
spectral matrix is rank deficient and the usual inverse is not defined. When this
occurs one could drop control of one of the responses, combine two responses in an
average or least squares way or define a pseudo inverse. The present algorithm
employs a pseudo inverse as described by Greville [ii]. The pseudo inverse routine
produces the true inverse for rank sufficient matrices while producing unique
inverses for rank deficient matrices. Due to extraneous noise at the output of most
physical systems the pseudo inverse is often not necessary.

The relationship between the input auto-spectra and output auto-spectra is

derived in a similar way as

* T

[Gxx(f)] = [Ixy(f )][Gyy(f)][Ixy(f )] . (7)
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Given a required output auto-spectra [Ryy(f)], which is generally an envelope

of multiple field measurements, the required input auto-spectra is defined by

Eq. (7) as

[Gxx(f)] = [Ixy(f)]IRyy(f)I[Ixy(f)] T. (8)

The control problem becomes that of defining [X(f)} such that the [Gxx(f)] of

Eq. (8) is realized. If the input signals were statistically independent random

signals, there would be no output cross-coupling control other than that fixed by

the physical exciters and test item arrangement. Thus, it becomes necessary to

introduce cross-coupling control. This is accomplished by considering a coupling

matrix [A(f)] such that

{X(f)} = [A(f)]{S(f)}, (9)

where the [A(f)] matrix is lower triangular (upper triangular elements are all zero)

and the input [S(f)} vectors are mutually independent white noise sources (unit

r.m.s, amplitude with random phase). Upon post multiplication of Eq. (9) by the

conjugate transpose of [X(f)], and taking the mathematical expectation, there

results an expression for the coupling elements in [A(f)],

T
[A(f)I[Gss(f)][ A (f)] = [Gxx(f)]- (10)

Since the input {S(f)} vectors are mutually independent white noise, their spectral

matrix [Gss(f)] is a unit diagonal matrix. A solution for the coupling elements in
[A] is given on page 262 of Ref. 10.

A flow chart is given in Fig. 2 which summarizes the major tasks of the control

algorithm. To insure test item safety during control signal shaping, an incremental

buildup to the full level drive has been introduced as denoted by the constant a and
increment a a. As can be seen in Fig. 2, system amplitude nonlinearities are

compensated via iteration by updating the system inverse response matrix [Ixy(f )]

every control loop. Maximum control is often achieved within two to three loop

cycles as will be discussed in the results section.

Overall spectral error Eyy is generated for each output by computing the mean

and standard deviation of the difference in logarithmic levels between the desired

level Ryy and the measured level Gyy across the frequency spectrum. The maximum

high and low values are also monitored. If control appears to be adequate, with
less than a 2 to 3 dB mean variation, or improvement does not seem to be occurring,

then individual spectrum plots are made to visually inspect the overall spectral

matching achieved. The mean and standard deviation error estimates are useful for

reducing the time consuming graphics data display during loop build up to the final

drive level. Final judgment on acceptable drive levels are always made based on

graphical inspection of the data.

SOFTWARE/HARDWARE IMPLEMENTATION

The hardware configuration used to implement the control algorithm was

configured from two main stand alone processors. The drive signal generation and

overall loop control is carried out via a 32-bit virtual memory laboratory

computer. The laboratory computer generates the drive signals via a digital-to-
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analog (DTA) interface and supplies control signals to a multi-channel fast Fourier
transform (FFT) analyzer. The multi-channel FFT analyzer is capable of digitizing,

Fourier transforming, and sample averaging up to 8 channels of data while

maintaining time correlation. The input drive signals are sampled simultaneously

with the output response signals so as to maintain correlation of all input and

output signals. The various sample-averaged cross-spectral densities required by

the control algorithm are transferred from the FFT analyzer to the laboratory

computer via direct memory access (DMA). The transfer of one channel pair of auto-
and cross-complex spectra (400 line) requires approximately 50 milliseconds. A two-

input/four-output system requires transfer of 14 channel pairs of information, thus

requiring approximately 0.7 seconds. The spectra transfer generally requires far
less time than the sample averaging time required for a confident data sample when

considering random error.

Drive Signal Generation

As previously stated, the approach taken to generate the required input drive

signals is to consider the shaker inputs to be a combination of statistically

independent random, stationary Gaussian signals {Si}, i=1,2,3 ...M. In which case,

the required drive signals {Xj}, j={,2,3 ...N can be related to the ideal signals

{S} via a lower triangular coupling matrix [A]. The initial drive signals are

generated first in terms of their spectral content; namely, unit amplitudes exist

from the lowest frequency, fL' to the highest frequency, fH' of interest for output

control. Using a uniformly distributed random number generator, the phase of each

spectral component is generated with random variation from component to component.
To be consistent with the FFT analyzer, a maximum of 400 spectral lines exist

between zero frequency and the analyzer cutoff frequency. The analyzer cutoff

frequencies, FC, are predefined and selected such that fH <-- fC" As such, the

Fourier spectrum of the drive signals initially consist of unit amplitude random

phase components in the analysis range fL to fH" Finite length time histories of

the initial signals are then obtained via the inverse Fourier transform of each

independent signal.

In order to capture a number of independent random sample averages of the

system response, sequences of the time histories must be continuously generated. If
the same time series for a particular channel is repeatedly generated, the output

wave form becomes pseudo-random and not acceptable for environmental simulation. To

form acceptable drive signals, sequences of the same signal were randomly delayed by

approximately 25 percent of the signal period and summed for output. It was found

that if the signal time delay were fixed and not randomized, the resulting signals

showed marked periodic components with unacceptable coherence between "independent"

drive signals, as is shown in Fig. 3. However, when introducing the randomized time

delays, acceptable signals such as shown in Fig. 4 resulted. It was found that the

random phase relationship between the original independent drive signals IS} could

only be maintained when introducing the coupling matrix in the following partitioned

form (as for a two-input system):

Xll 0 All 0 S1 0
(11)
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Time histories are generated for the XII, X21 and X22 signals individually where XI1

and X21 maintain identical random phase shifts and random time lags as specified by

the original generation of SI, and X22 that of S2. The desired time history drive

signals corresponding to the specified coupling (the A matrix) are then

xl(t ) = Xll(t )

and (12)
x2(t ) = x21(t ) + x22(t).

Additional important characteristics of the drive signals are that they be
stationary and that the signal crest factor can be controlled. Stationarity is
measured by the variation in signal mean and r.m.s, level as time progresses. For
the present algorithm, the zero mean and r.m.s, variation are less than i percent.
Control over peak-to-r.m.s, level is accomplished by introducing signal peak
folding. All data points exceeding the desired peak value are folded back into the
signal, not clipped at the peak value. Thus, signal peaks when folded become local
valleys which tend to raise the signal r.m.s, level. Crest factor control in the
range from 2.0 to 4.5 is readily accomplished.

Output Spectra Specification

In order to accommodate various levels of output control specification which

presently exist for equipment under qualification and provide a means to evaluate

the importance of all elements in a specification, the following specifications for

the Ryy spectral matrix were developed.

1) Full Ryy Specification: where auto-spectra are specified by spectrum

frequency and magnitude break point pairs and cross-spectra are specified

by spectrum frequency, magnitude, and phase break point values.

2) Auto-Spectra and Coherence Specification: where auto-spectra are specified

by spectrum frequency and magnitude break point pairs and cross-spectra are

specified by frequency and coherence break point pairs. Herein, the cross-

spectra magnitudes are generated from the definition of spectral coherence,

Yij - GiiGjj (13)

3)
and the phase of Ryy is taken as that of the measured Gyy.

Auto-Spectra Only: where auto-spectra are specified by frequency and
magnitude break point pairs. The cross-spectra magnitude and phase are

generated from the measured Gyy in proportion to the magnitude of the

specified Ryy via:

(Rii • Rjj)½

Rij - ½ ° Gij (14)
(Gii • Gjj)

For existing test specifications such as MIL-STD-810C/D, only the output auto-
spectra may be known. If field measurements were made without specification of
cross-spectra, one may be much better off to accept the cross-axis coupling of the
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test setup rather than attempting to invoke a physically unrealizable specification
for which control would be impossible or which may drastically alter the service
life of the test item.

TYPICAL RESULTS

Several types of exciters, exciter arrangements, and test item configurations

were used to evaluate the proposed control algorithm and its limitations as reported

in Ref. 9. The algorithm evaluation process will, of course, continue as the system
is employed for equipment qualification purposes, and the author is confident that

much is to be learned as opportunities arise for its use. The following example

illustrates the general capabilities of the control algorithm.

Multi-Resonant Beam

In order to study the control of sharp structural resonances a small cantilever

beam was driven using two small voice coil shakers. Three accelerometers were used

to record the beam response. The two-input/three-output system is schematically

shown in Fig. 5.

The cantilever beam exhibited damping of less than 0.3% critical, which is

uncharacteristic of built-up structures in which damping levels of 2 to 5% are more

representative. Thus, the low damped beam provides a harsh test of the control

algorithm to control resonances. The initial drive signals to the exciters are

shown in Fig. 6 as being independent random signals in the frequency range from 5 to
250 Hz. The initial beam response to the drive signals and the desired output

magnitude specifications are shown in Fig. 7. Due to the sharp resonances in the
beam, exhibiting distinct phase between outputs, only the cross-axis coherence was

specified since the excitors were of marginal power and, thus, not likely powerful

enough to change system phasing. The coherence between output channels i and 2 was

set at 0.50, as was that between channels 2 and 3. The coherence between channels 1

and 3 was set to 0.20. Control after three loop iterations resulted in the output

spectra shown in Fig. 8. As can be seen, the primary beam resonance was well-
controlled, as was the second beam resonance at outputs 2 and 3. Since output 1 was

at an anti-node of the second beam resonance, sensitivity to the second mode was

high at that location as is shown in Fig. 8a. The second beam resonance occurs
around 90 Hz and with a critical damping ratio of 0.003, its half-power point

bandwidth would be approximately 0.54 Hz. Thus, with a control bandwith of 0.625 Hz

(250 Hz/400 lines), reasonably good control of the mode was realized. Control of

the cross-spectra was reasonably good, however, not as good as the auto-spectra

shown in Fig. 8.

Aircraft External Store Vibration Simulation

The aircraft external store used to evaluate a two-input/four-output

control configuration is shown in Fig. 9. The external store is a dummy test item

with an overall length of 193.3 cm (76.12 inches). Major bulkheads are at Missile
Stations (MS) 30.38, 55.06 and 66.125. The bulkheads provide for exciter attachment

and free-free missile suspension via elastic bungy cords (2 Hz vertical). The test

item is fitted with add-on damping material to raise modal damping values to 0.02

minimum. A dynamic modal analysis of the test item in the Frequency range from 10
to 500 Hz revealed an abundance of normal mode resonances as shown in Table 1. It

was felt that this multi-modal structure would provide a good evaluation of the

proposed control algorithm.

145



Input excitation to the test item was provided by two electrodynamic modal

shakers attached at MS 30.38 and MS 66.125. The shakers were aligned normal to the
missile longitudinal axis and 45 degrees to the vertical (see Fig. 9). The

acceleration response control points are located at MS 55.06 and MS 30.38 with one

vertical and one horizontal transducer at each location. Response channels 1 and 4

are the horizontal responses and channels 2 and 3 the vertical responses.

Field data were not available for the test item and, therefore, the control

specification was a flat response in the frequency range from 20 to 500 Hz on each

output with magnitude 10-4 g2/Hz. The bandwidth of resolution was set at 1.25 Hz

which should provide marginal resolution to control a 2% damped 100 Hz mode (half

power point bandwidth of 4.0 Hz).

The output response specification for channels 1 and 3, along with the recorded
responses after the initial broadband excitation and after three control loop

cycles, are shown in Fig. 10. As can be seen by the data given in Fig. lOa,
channel i response was initially dominated by the fuselage first and second

horizontal modes; nevertheless, the control algorithm performed reasonably well.

Similar trends were seen in the other responses as well as is shown in Fig. lOb for

the channel 3 response. Close examination of the hay-stack response in the area of

460 Hz in channel 3 response shows the incompatibility of the control specification

relative to the location of the excitors and response accelerometers. In this case,

it was impossible to drive response 4 (not shown) in the horizontal direction to the

desired level while maintaining vertical response to within limits in the frequency

region of the third fuselage vertical bending mode at 462.5 Hz. For the most part,

the control algorithm performed well, except at these incompatible areas. It is

expected that measured field data would not reflect these incompatibilities if the

exciters were placed at the store-to-aircraft attachment points and field data were
recorded at the specified output locations.

Throughout the evaluations discussed above, 20 sample averages were used to
obtain the results shown. In many cases, 5-10 averages would have been adequate

during signal development. A higher number of averages, on the order of 200, are

appropriate For random data analyses of the final drive signals to establish

statistical confidence [101. Control loop time is highly dependent on the frequency

range of interest and the graphical display of results. Twenty sample averages at a

maximum frequency of 62.5 Hz requires 128 seconds; while for an analysis out to

2000 Hz, the sample average time is only 4 seconds. Thus, in the former case, 10

seconds for control analysis time is insignificant while in the latter case it is

measurable. In either case, the time to record graphical data to a hardcopy device

is significant. Such intermediate output records can, of course, be avoided after

developing confidence in the algorithm.

CONCLUSIONS AND RECOMMENDATIONS

Based on the limited experience gained with the control algorithm thus Far, the
Following conclusions and observations are made:

i) It appears that the control algorithm, as implemented, will allow different
numbers of input and output channels. This feature can be useful in

various practical test situations, including assurance of uniform
excitation for a test item.

2) The algorithm updates the system inverse response matrix every control loop

cycle which accommodates system amplitude nonlinearities and allows

compensation for system degradation during life time simulation.
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3) Full control of cross-coupling between all output responses can be invoked

with the present algorithm. However, it appears that the extent to which

control is achieved is highly dependent on the physical arrangement of the
exciters.

4) Analysis bandwidth is an important parameter in controlling test item

resonances. The 400-1ine analysis used in the present system appears to be

marginal, with 800 to lO00-1ine analysis being preferred.

5) The dynamic range of the present system is set by the FFT analyzer, that

being the 12-bit analog-to-digital converters. It is recommended that 16-

bit resolution be used to insure sufficient dynamic range especially for

random signal control where crest factors of 3 to 4.5 are required.

SYMBOLS

Values are given in both SI and U.S. Customary Units.
calculations were made in U.S. Customary Units.

The measurements and

fL,fc,f H

t

Xi

Yj

A(t)

E

_(f)

Hyx(f)

Ixy(f)
N

S(t)

T

X_(f,T)

Y_(f,T)

Yij

low, center, and high frequency, Hz

time, sec.

input voltages of the ith channel, volts

output accelerations of the jth channel, g

lower triangular coupling matrix

mathematical expectation operator

Overall output spectral error, g2/Hz

one-sided input/output cross-spectral density, volt-g/Hz

one-sided input auto-spectral density, volts2/Hz

one-sided output auto-spectral density, g2/Hz

system Frequency response Function, g/volt

system inverse frequency response Function, volt/g

number of sample records

independent random white noise sources, volt

finite period of time, sec.

kth sample record of finite period Fournier TransForm of

Xi(t ), g-sec

kth sample record of finite period Fournier Transform of

Yj(t), g-sec

spectral coherence (Eq. 13)

complex conjugate operator
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Table 1. External Store Natural Frequencies

Mode No. Frequency Mode Description

(Hz)

1

2

3

4

5

6

7

8

9

10

11

12

13

15.0 Ist Symmetric Wing Vertical Bending

52.5 Symmetric Wing Torsion

57.5 Coupled Tail/Wing Horizontal

97.5 1st Fuselage Vertical Bending

102.5 Ist Fuselage Vertical Bending

107.5 1st Fuselage Horizontal Bending

120.0 2nd Symmetric Wing Vertical Bending

202.5 2nd Fuselage Horizontal Bending

227.5 2nd Fuselage Vertical Beding

390.0 Wing Panel Mode

410.0 Wing Panel Mode
435.0 2nd Fuselage Horizontal Bending

462.5 3rd Fuselage Vertical Bending + 2nd Wing

Y1 Y2 Y3 Responses

System

X 1 X 2 Input Voltages

Figure 1. Two-lnput/Three-Output System
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Figure 2. Control Algorithm Flow Chart
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Accelerometer Outputs

Figure 5.
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Schematic of the Two-Input/Three-Output System
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Figure 8. Beam Response After Three Iterations
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